GeekCoding101

  • Home
  • GenAI
    • Daily AI Insights
    • Machine Learning
    • Transformer
    • Azure AI
  • DevOps
    • Kubernetes
    • Terraform
  • Technology
    • Cybersecurity
    • System Design
    • Coding Notes
  • About
  • Contact
Attention Mechanism
Transformer

Transformers Demystified - Day 2 - Unlocking the Genius of Self-Attention and AI's Greatest Breakthrough

Transformers are changing the AI landscape, and it all began with the groundbreaking paper "Attention is All You Need." Today, I explore the Introduction and Background sections of the paper, uncovering the limitations of traditional RNNs, the power of self-attention, and the importance of parallelization in modern AI models. Dive in to learn how Transformers revolutionized sequence modeling and transduction tasks! 1. Introduction Sentence 1: Recurrent neural networks, long short-term memory [13] and gated recurrent [7] neural networks in particular, have been firmly established as state-of-the-art approaches in sequence modeling and transduction problems such as language modeling and machine translation [35, 2, 5]. Explanation (like for an elementary school student): There are special types of AI models called Recurrent Neural Networks (RNNs) that are like people who can remember things from the past while working on something new. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs) are improved versions of RNNs. These models are the best performers (state-of-the-art) for tasks where you need to process sequences, like predicting the next word in a sentence (language modeling) or translating text from one language to another (machine translation). Key terms explained: Recurrent Neural Networks (RNNs): Models designed to handle sequential data (like sentences, time series). Analogy: Imagine reading a book where each sentence depends on the one before it. An RNN processes the book one sentence at a time, remembering earlier ones. Further Reading: RNNs on Wikipedia Long Short-Term Memory (LSTM): A type of RNN that solves the problem of forgetting important past information. Analogy: LSTMs are like a memory-keeper that…

December 29, 2024 0comments 200hotness 0likes Geekcoding101 Read all
Newest Hotest Random
Newest Hotest Random
A 12 Factor Crash Course in Python: Build Clean, Scalable FastAPI Apps the Right Way Golang Range Loop Reference - Why Your Loop Keeps Giving You the Same Pointer (and How to Fix It) Terraform Associate Exam: A Powerful Guide about How to Prepare It Terraform Meta Arguments Unlocked: Practical Patterns for Clean Infrastructure Code Mastering Terraform with AWS Guide Part 1: Launch Real AWS Infrastructure with VPC, IAM and EC2 ExternalName and LoadBalancer - Ultimate Kubernetes Tutorial Part 5
Terraform Meta Arguments Unlocked: Practical Patterns for Clean Infrastructure CodeTerraform Associate Exam: A Powerful Guide about How to Prepare ItGolang Range Loop Reference - Why Your Loop Keeps Giving You the Same Pointer (and How to Fix It)A 12 Factor Crash Course in Python: Build Clean, Scalable FastAPI Apps the Right Way
Terminal Mastery: Crafting a Productivity Environment with iTerm, tmux, and Beyond OAuth 2.0 Grant Types Finished Machine Learning for Absolute Beginners - Level 1 OAuth 2.0 Authorization Code Flow Crafting A Bash Script with Tmux Supervised Machine Learning – Day 2 & 3 - On My Way To Becoming A Machine Learning Person
Newest comment
Tag aggregation
notes Supervised Machine Learning security cybersecurity AI Machine Learning Transformer Daily.AI.Insight

COPYRIGHT © 2024 GeekCoding101. ALL RIGHTS RESERVED.

Theme Kratos Made By Seaton Jiang